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Generation, Characterization, and Reactions of Fulvene Dianions
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The dianion of 6,6-diphenylfulvene obtained by reduction with
lithium metal was first characterized spectroscopically. Reduction of
6-dimethylamino-6-phenylfulvene also generated its dianion whose
reactions with electrophiles led to 6-phenylfulvene derivatives, demon-

strating synthetic utility of fulvene dianions.

We have recently reported the novel reductive reactions of 6-dimethylaminofulvenes,
which turned out to be of synthetic use owing to the leaving ability of dimethylamino
group: while 6-dimethylaminofulvene gives, upon treatment with lithium naphthalene in
THF, 6,6'-bifulvenyl in high yield through coupling of the intermediate anion radical,
6,6-bis(dimethylamino)fulvene (1) produced 6-dimethylamino-6-lithiofulvene (3), a 6-
fulvenyl anion of potential synthetic uti]ity.ll For the latter reaction, we suggested
intermediate formation of dianion 2, ascribing the spontaneous elimination of Ilithium
dimethylamide to electronic repulsion in the dianion.1P)  Introduction of an anion-
stabilizing substituent in place of the dimethylamino group would favor more the
formation and allow the characterization of fulvene dianions. Concerning this, Oku and
co-workers reported that alkali metal reduction of 6,6-diphenylfulvene (4) yielded, after
quenching with water, dihydro compounds probably via dianion 5.2) However, neither 2
nor 5 has been yet definitely established. We here report the first NMR observation of
fulvene dianion 5 and the generation and reactions of another dianion 7 derived from 6-

dimethylamino-6-phenylfulvene (6), 7 revealing its synthetic utility.

X 2e x 1 NMe,
O~ 0] O~
Y Y Li
1 : X=Y= NMe, 2
4 : X=Y= Ph 5
6 : X= NMe,, Y= Ph 7
Upon electrochemical reduction (cyclic voltammetry), diaminofulvene 1 shows irre-
versible reduction at Epa = -2.83 V (vs.Ag/Ag(l); DMF, n-BuyNClO4). Replacement of
the dimethylamino groups with a phenyl group one by one makes the reduction easier,

showing two quasi-reversible one-electron reductions (6: E;;9 = -1.99, -2.34 V; 4:
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-1.44, -2.01 V). This trend is in agreement with the decrease of theoretical HOMO-
LUMO gap of 6-phenylfulvene relative to that of 6-aminofulvene.3) The reduction
potentials of 4 is even less negative than those of benzophenone.‘” We, therefore,
expected dianion 5 to be stable enough for spectroscopic measurements, in particular,
for NMR measurement.

Treatment of 4 with a small excess of lithium powder in THF-dg for 20 min under
sonication cleanly afforded a deep purple solution of the expected dianion 5. This
dianion was stable in the solution at room temperature under inert gas atmosphere and
regenerated 4 (81%) on exposure to oxygen.5]

14 and 13¢c NMR data of 5 (Table 1) are consistent with the dianion structure.
The averaged 13C chemical shift (68,, = 117.9) reasonably agrees with the calculated
value (§ = 116.0) according to O'Brien's empirical equation.B) The most notable feature
in the NMR data is that 1H and 13C chemical shifts of the cyclopentadienyl and
diphenylmethyl parts of 5 are similar to those of cyclopentadienyl anion and
diphenylmethyl anion (8),7) respectively, except for the appreciably low field appearance
of the phenyl ortho protons (H2',6'; § 7.25) compared with ortho protons of 8 ( §6.51).
Charge densities (Table 1) obtained by the MNDO calculation are consistent with the 13¢
NMR results.8) Thus, dianion 5 is best represented by the separated dianion structure
5A, that is, a cyclopentadienyl anion weakly perturbed by diphenylmethyl anion. The
low field shift of C2' protons of 5 may be due to additional anisotropy effect by the

aromatic cyclopentadienyl ring.

8

Table 1. IH and 13c NMR spectral data?) and calculated charge densitiesb)

Position 14 Chemical shifts (&) 13¢ Chemical shifts (§) Charge densities
5C,d) ge) 5f) 88) 5

1, 4 5.92 100.60 1.212

2, 3 5.56 99.25 1.233

5 127.94 1.062

6 81.30 78.5 (C-a) 1.301

1! 148.94 147.4 0.906

2', 6' 7.25 6.51 121.18 117.5 1.115

3', 5! 6.39 6.54 127.94 128.1 1.067

4' 5.67 5.65 109.67 107.1 1.221

a) In THF-dg. b) Calculated by the MNDO method, c) At 400 MHz, d) J; ﬁ =
J1,3 = 2.6 Hz, J21’3l = 7.9 Hz, J3-’4l = 7.0 Hz. e) Ref. 7, f) At 100 MHz.
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Although less stable than 5, dianion 7 derived from 6 is still stable enough to take
part in the reactions with electrophiles at low temperatures. Thus, treatment of 6 with
2.5 equivalents of lithium naphthalene in THF at -78 °C (5 min) followed by quenching
with DyO gave dideuterated 6-phenylfulvene (9) in 81% yield probably via 10 (degree of
deuterium incorporation: 95% at C-6; 90% at C1-C4 by 1H NMR). This result sharply
contrasts with the incorporation of only one deuterium in the similar reaction of 1 under
the same condition where 6-fulvenyl anion 3 is rapidly formed as the intermediate.

Interestingly, the cyclopentadienide part and the phenyldimethylaminomethyl part
(C-6) of 7 displays different reactivity towards alkylations: the reaction of 7 with
dimethylsulfate at -78 °C for 1 h and subsequent quenching with water afforded 6-
methyl-6-phenylfulvene (11, 90%), whereas the reaction with methyl iodide at -78-0 °C
for 2 h did dimethylated fulvene 12 (41%).9:10)  Thus, C-6 is more reactive than the
aromatic cyclopentadienide part to offer an advantage for synthetic applications. A
typical example is the reaction of 7 with 1,2-dichloroethane: while the reaction at 0 °C
for 10 min produced chloroethylfulvene 1311) (63%), the reaction at room temperature (2
h) led to cyclization giving dihydropentalene 1412) (27%) along with 13 (13%).

Further reductive reaction of 13 with Li-Naph (THF, -78 °C) yielded cyclopropyl-
cyclopentadiene 1513) (45%), probably again through dianion 186.
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To conclude, fulvene dianions can be readily generated by alkali metal reductions
when anion stabilizing group(s) is present at C6 and be used as synthetic intermediates.
This work was supported by the Grant-in-Aid for Scientific Research on Priority
Areas No0.01648003 from the Ministry of Education, Science and Culture, Japan. We also
thank professor A. Tajiri, College of Education, Hirosaki University for the MNDO
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